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The four-dimensional variational data assimilation
methodology for assimilating noisy observations into
a deterministic model has been the workhorse in
forecasting centres for over three decades. While
this method provides a computationally efficient
framework for dynamic data assimilation, it is largely
silent on the important question concerning the
minimum number and placement of observations.
To answer this question, we demonstrate the dual
advantage of placing the observations where the
square of the sensitivity of the model solution
with respect to the unknown control variables,
called forward sensitivities, attains its maximum.
By following this approach, we can force the
observability Gramian to be of full rank, which in turn
guarantees efficient recovery of the optimal values
of the control variables, which is the first of the
two advantages of this strategy. We further show
that the proposed strategy of placing observations
has another inherent optimality: the square of
the sensitivity of the optimal estimates of the
control with respect to the observations (used to
obtain these estimates) attains its minimum value,
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a second advantage that is a direct consequence of the above strategy for placing observations.
Our analytical framework and numerical experiments on linear and nonlinear systems confirm
the effectiveness of our proposed strategy.

1. Introduction
Estimating the unknown parameters and initial/boundary conditions (collectively known as the
control) of a dynamic model based on a finite set of noisy observations constitutes an important
class of inverse problems of interest in a variety of disciplines [1–13]. At its core, this class of
inverse problems gives rise to at least four question levels: (i) observability, (ii) algorithmic path
to estimate the model control, (iii) observation count and placement of observation, and (iv)
assessing the quality of the estimates. At the first level, the observability question may be stated
as follows: Given the model dynamics and the observation operator, which relates the state of the
dynamics to the observable, under what condition is it possible to estimate the unknowns based
on a finite set of noisy observation? In a fundamental paper, Kalman [14] first provided a binary
yes or no answer to this question based on the rank of the observability matrix derived from the
linear model dynamics and the linear observation operator. Since then, this basic rank condition
has been extended in several directions, including local and global observability of nonlinear
systems [15,16]. Furthermore, building upon the traditions in stability theory [17], researchers
have proposed the concept of the degree of observability and scalar measures to quantify this
degree [18–21].

At the second level, given that a system is observable, the question is: What is an efficient
algorithmic pathway to compute the estimates of the unknowns? Within the context of
geosciences, a variational framework known as the four-dimensional variational data assimilation
(four-dimensional VAR) provides an answer in two steps. In the first step, a cost functional is
defined by the weighted sum of squared differences between the actual and model counterpart
of the observation at the time of the observation. The gradient of this cost functional (also known
as the adjoint gradient) is computed using a forward run of the model and a backward sweep
of its adjoint model. This process is referred to as the adjoint method (refer to Chapters 22–25 in
Lewis et al. [4] for details). In the second step, this gradient is used in a minimization algorithm
(Chapters 9–12, Lewis et al. [4]) to find an update of the control. These two steps are repeated until
the desired convergence is reached.

The four-dimensional VAR-based approach has been the workhorse of weather forecasting
centres around the world since its introduction [22]. Despite its grand success in delivering
forecast products for public consumption for decades, the four-dimensional VAR framework
works with a given set of observations and is largely silent on the third level of inquiry, namely,
what is the minimum number of observations required and their placement in the spatio-temporal
domain to maximize the effectiveness of computing the estimates? At this juncture, it is useful to
review the impact of the number of observations in general. Thanks to advances in the sensor,
wireless communication, mass storage and powerful computing technologies, we are steadily
moving away from data-sparse to data-rich regimes. The ability to sample spatio-temporal
fields at very high frequency (resulting from ever decreasing sampling intervals) has resulted
in truly large datasets that are several orders of magnitude greater than what was available
a decade ago. This growth has resulted in two side effects. First, the data exhibit very high
correlations, which implies that more data does not translate into more information. Second, it is
computationally demanding to ingest all the available data into an assimilation algorithm. These
latter considerations highlight the importance of identifying smaller and independent subsets
of observations to be used in estimation, which has resulted in a growing body of literature on
‘thinning’ and creating of ‘super observations’ [23].

In Lakshmivarahan et al. [24,25], a strategy for answering this third level of question within
the four-dimensional VAR framework was provided for the first time. An analysis based
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on the forward sensitivity method (FSM) has shown that the observability Gramian, G, is a
good approximation to the Hessian of the cost function (it is exact for the linear case). In
addition, the observability Gramian admits an additive decomposition: G =∑N

i=1 Gi, where Gi
is the contribution to the overall Gramian at the ith observation time and N is the number of
observations. While each of these components is symmetric and positive semi-definite, it is shown
in [24,25] that we can indeed force the Gramian G to be positive definite by placing the N = (n + p)
observations where the squares of the forward sensitivities of the model solution (with respect to
n components of the initial condition and p parameters including the boundary conditions) attain
their maxima. This strategy avoids flat patches in the cost functional by bounding the norm of the
adjoint gradient away from zero. This is the first of the two advantages referred to in the title of
this paper. The papers by Lewis et al. [26,27] and Ahmed et al. [28,29] contain several applications
of this strategy.

At the fourth question level, the emphasis shifts to analysing the quality of the resulting
estimates of the control variables. There are two primary ways to approach this question. The
first is to theoretically quantify the asymptotic distribution of the estimates by letting the number
of observations increase without bounds. Within the context of time-series analysis dealing with
linear, discrete time and stochastic dynamic models of the auto regressive integrated moving average
types, there is vast literature relating to the asymptotic analysis of the estimates of the parameters
of these models [30,31]. Likewise, there is a large body of results relating to static nonlinear models
[32,33]. But to our knowledge, there is no such theory of estimates for large-scale nonlinear
dynamic models of interest in the geosciences. In the absence of such a statistical theory, we
settle for the next best option—an analytical approach to quantify the sensitivity of the estimates
with respect to the observations. This quantity is particularly important when the given dynamic
model exhibits high sensitivity to errors in the control. In this paper, we prove that the sensitivity
of the estimates with respect to the observations attains its minimum value when we place
the observations where the squares of the forward sensitivities are maximized, as in [24,25].
The positive definite Gramian resulting from the proposed strategy for observation placement
determines the control estimates that exhibit the smallest possible sensitivity to observations.
This is the second advantage of setting the observation placement strategy using the forward
sensitivity analysis.

(a) Historical remarks
The four levels of inquiry described above have natural connections to many different areas of
the data assimilation and parameter estimation in dynamical systems literature spanning several
decades. First is the fundamental structural identifiability question examined by Bellman &
Åström [34], where it was shown that certain types of model parametrization do not admit a
unique solution to the parameter estimation problem. Furthermore, there is extensive literature
on lumped parameter system identification [35] and adaptive control [36] dealing with parameter
estimation. A recent paper by Villaverde [37] contains an extensive analysis of observability and
identification of nonlinear systems of interest in mathematical biology.

Within the parlance of distributed parameter systems, especially in the context of process
control in chemical engineering, there is an extensive body of results relating to parameter
estimation, placement of observations and analysis of the sensitivity of parameter estimates with
respect to observations. We refer to the monograph by Ucinski [38] and papers by Alaña [39]
and Christopher & Fathalla [40] for more details. The results in the present paper share some
connections with the developments in Christopher & Fathalla [40] and Alaña [39]. Nonetheless,
these two papers deal only with parameter estimation for distributed parameter systems,
while the present study addresses the mutual estimation of initial conditions and parameters
(denoted as control) in the same footing for systems described by ordinary/partial differential
equations (ODEs/PDEs). For general treatment of sensitivity-based methods, we refer to the
foundational works by Cacuci and co-workers [41,42]. Some of the ideas developed in the current
study can be also connected to the vast and growing literature on adjoint-based analysis of
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targeted observations and adaptive observations [43–48] as well as ensemble-based approaches
to observation impact analysis [49,50].

(b) Significance
This paper addresses, for the first time, key questions related to the simultaneous estimate of
unknown initial conditions and model parameters in variational data assimilation frameworks.
The main questions that we answer correspond to observation count and optimal placement as
well as the subsequent quality of the inverse problem solution. We present a mathematically
concrete strategy for selecting the observation locations by tracking the model forward sensitivity
metrics, namely the forecast sensitivity with respect to the initial condition and to the model
parameters. Because these sensitivities can generally be positive or negative, we opt for placing
the observations at points where the squares of the forward sensitivities attain their maximum.
We support the proposed observation placement strategy with a clear theoretical analysis to
understand the consequences of this strategy. In particular, we demonstrate both theoretically and
empirically that the advocated observation placement methodology has two main advantages as
follows.

First, by placing the observations where the forward sensitivities are maximized, we enforce
the observability Gramian matrix to be positive definite. We illustrate that this Gramian is
closely related to the adjoint gradient of the cost function. Specifically, a positive definite
observability Gramian leads to non-zero values of the adjoint gradient norm, which accelerates
the optimization algorithm that is used to estimate the unknown initial conditions and model
parameters. We highlight that the choice of observation locations controls the shape of the
resulting cost function (defined using a weighted sum of the squared differences between the
collected measurements and the model counterpart of the observation). Placing the observations
using the presented forward sensitivity analysis avoids flat regions of the cost function, which
would negatively affect the algorithm convergence.

Second, we demonstrate that the optimal estimates of the initial conditions and model
parameters are sensitive to the locations where measurements are collected. More specifically,
we prove that the sensitivities of those estimates (with respect to the observations themselves)
reach their minimum values when the forecast sensitivities (with respect to the control) reach
their maximum values. In other words, by placing the observations where the squares of forecast
sensitivities with respect to the unknown control are maximized, we guarantee that the solution
of the inverse problem is most robust to small perturbations in observation values. This second
result has significant merit in practice, considering the inevitably noisy sensor data with different
levels of uncertainties. We back up the analytical framework with numerical experiments using
representative systems exhibiting linear and nonlinear dynamics with unknown initial conditions
and model parameters.

(c) Organization of the paper
In §2, we provide a succinct version of the statement of the inverse problem of interest in
this paper. In §3, we introduce an optimal observation placement strategy using the forward
sensitivity analysis that links the observability Gramian and the adjoint gradient. We lay out the
analytical framework for defining the dual advantages of the proposed observation placement
strategy in §§3 and 4. In the latter, we provide a theoretical analysis for evaluating the sensitivity
of the control estimates with respect to the observation. In §5, we illustrate the theory of
observation placement through the forward sensitivity analysis using examples corresponding
to scalar linear and nonlinear dynamical systems with two elements of control—the initial
condition and model parameterization—as well as two systems governed by PDEs in one and
two spatial dimensions. We draw concluding remarks about the derived optimality conditions
for observation placement and the associated twin advantages in §6.
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2. Mathematical preliminaries
We start with a description of the model. Our primary goal is to bring out the beauty and elegance
of the underlying ideas and results using simple, easily understandable models. Therefore, we
first derive the analytical framework and perform the theoretical analysis using a scalar (one-
dimensional) dynamical system with a single parameter. After that, we provide extensions and
insights regarding the higher dimensional cases.

(a) Model
Let I ⊂ R and P ⊂ R be two subsets of the real line representing the set of all allowed values of
the initial condition x(0) and parameter α of a dynamic model, respectively. The state, x(t) ∈ R,
evolves according to the following nonlinear, time-invariant, ODE:

ẋ = f (x, α), (2.1)

where f : R × R → R, x0 = x(0) ∈ I and α ∈P . Henceforth, the triplet (f ,I,P) denotes a class of
models of interest. Let x(t) = x(t, x0, α) denote the solution of equation (2.1). Because the solution
depends on x0 and α, the vector c = (x0, α)T ∈ R

2 is called the control and in the rest of the paper,
we use x(t) and x(t, c) interchangeably.

For the FSM theoretical analysis that we carry out, in addition to the existence and uniqueness
of the solution of equation (2.1), we are also interested in the smoothness of the solution regarding
the existence of continuous (mixed) partial derivatives of x(t) with respect to x0 and α of order
K ≥ 1. In this context, we recall that a function g : R → R belongs to the class Ck if g and its first
K derivatives are continuous. According to a theorem in Chapter 2, Section 7 in Arnold [51], the
solution x(t) of equation (2.1) belongs to CK for some integer K ≥ 1 if f (x, α) belongs to the same
class CK. We define S(f ) = {x(t, c)|c ∈ I × P} as the ensemble of all possible solutions of equation
(2.1) for a given f (x, α) ∈ CK, where x(0) and α are varied in I and P . For example, if ẋ = ax, I = R

+
(the positive real line), and P = [−1, 1], then S(f = ax) is the set of all exponentials of the form
x(t) = eatx(0) where a ∈ [−1, 1] and x(0) ∈ R

+.
The forward sensitivities of the solution at time t > 0 with respect to the initial condition x0

and parameter α can be defined as follows:

u(t) = ∂x(t)
∂x0

and v(t) = ∂x(t)
∂α

. (2.2)

By differentiating equation (2.1) with respect to x(0) and α, it can be verified that u(t) and v(t)
evolve according to linear non-autonomous systems given by

u̇(t) = Df (x(t))u(t), u(0) = 1

and v̇(t) = Df (x(t))v(t) + Dα
f (x(t)), v(0) = 0,

⎫⎬
⎭ (2.3)

where

Df (x) = ∂f
∂x

and Dα
f (x) = ∂f

∂α
. (2.4)

We refer to Lakshmivarahan and co-workers [52,53] for the derivation of the FSM. By solving
equations (2.1) and (2.3), we can compute the evolution of the solution x(t) and its sensitivities
with respect to time.

(b) Observations
It is assumed that there is an underlying physical process and that the model (f ,I,P) defined
above is faithful to this process in the sense that all the large features of the process are captured
by the model. Let x̄(t) for t ≥ 0 be the true (yet unknown) state of the system under consideration.
It is often the case that we may not be able to observe x̄(t) but only a certain function of it at
discrete points in time and space. In addition, observations get corrupted by device errors and
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measurement noise that is usually modelled as additive Gaussian noise with zero mean and
known variance σ 2.

Let h : R → R, where h ∈ CK, be the function that maps the true state x̄(k) into the observable
z(k) as follows:

z(k) = h(x̄(k)) + η(k), (2.5)

where k is the discrete time index and η(k) is white noise, meaning that the observation z(k)
contains noisy information about the (unknown) true state. Finally, we define O = {z(ki)|1 ≤ i ≤ N}
as the set of N observations at discrete times given by 0 ≤ k1 ≤ k2 ≤ · · · ≤ kN .

(c) Statement of the problem
Given the model, equation (2.1), and the set O of observations, our goal is to find the initial
condition x(0) ∈ I and parameter α ∈P such that the solution x(t) of equation (2.1) starting with
c = (x0, α)T minimizes the weighted sum of squared error between z(k) and h(x(k)). To this end, we
define a cost functional as follows:

J(c) = 1
2σ 2

N∑
i=1

[z(ki) − h(x(ki))]
2. (2.6)

The problem of minimizing J(c) can be solved by computing the gradient ∇J(c) ∈ R
2, called the

adjoint gradient, and the minimizer can be sought by using the adjoint gradient in an iterative
minimization algorithm [4].

3. Observability Gramian and adjoint gradient
We first examine the fine structure of the adjoint gradient and its dependence on the observability
Gramian using the forward sensitivity analysis [24,25]. Let x(t) and x̄(t) be the solution of equation
(2.1) starting from c = (x0, α)T and c̄ = (x̄0, ᾱ)T, respectively, where the perturbations in the initial
conditions and the parameter are given by

δx0 = x̄0 − x0, δα = ᾱ − α, δc = (δx0, δα)T. (3.1)

The induced first variation in the solution of equation (2.1) resulting from the initial perturbation
δc in the control c is defined as follows:

δx(k) = x̄(k) − x(k). (3.2)

The forecast error, also known as the innovation, can be thus computed as follows:

e(k) = z(k) − h(x(k)) = h(x̄(k)) − h(x(k)) + η(k). (3.3)

Because h ∈ CK and by substituting equation (3.2) in equation (3.3) and applying first-order Taylor
expression, the deterministic component of e(k) can be written as follows:

e(k) = Dh(x(k))δx(k), (3.4)

where Dh(x) = ∂h/∂x. Also, recall from first principles δx(k) = u(k)δx0 + v(k)δα = Fδc, where

F = [u, v] ∈ R
1×2. (3.5)

From equations (3.4) and (3.5), we get:

e(k) = Dh(x(k))Fδc. (3.6)

Now, let δJ be the induced variation in J(c) resulting from the initial perturbation δc in c. Then,
it can be verified that [4]:

δJ = − 1
σ 2

N∑
i=1

e(ki)Dh(x(ki))δx(k) = − 1
σ 2

N∑
i=1

e(ki)Dh(x(ki))Fδc. (3.7)
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Substituting for e(k) using equation (3.6), we get an alternative expression for δJ as follows:

δJ = − 1
σ 2 δcTGδc, (3.8)

where

G =
N∑

i=1

Gi ∈ R
2×2 and Gi = FTD2

h(x(ki))F ∈ R
2×2. (3.9)

The 2 × 2 matrix G is known as the observability Gramian, which is always symmetric and, in
general, positive semi-definite. The problem of placing observations is determining the minimum
number of observations required and where to place them in order to make G positive definite.
To this end, we rewrite G as

G =
N∑

i=1

D2
h(x(ki))

⎡
⎣ u2(ki) u(ki)v(ki)

v(ki)u(ki) v2(ki)

⎤
⎦ . (3.10)

Under the regularity assumption that Dh(x) does not vanish along the solution in the set S(f )
in §2a and that D2

h(x(ki)) is positive, a good rule is to place the observations where u2(ki) and
v2(ki) attain their maximum value. Clearly, in this case, we would need only N = 2 observations:
one at the maximum of u2(k) and another at the maximum of v2(k). We note that by placing the
observations where u2 and v2 attain their maximum values, the observability Gramian G becomes
positive definite, which in turn bounds the norm of the adjoint gradient away from zero (see
equation (3.8)). By doing so, flat patches of the cost functional are avoided and the convergence
of the optimization algorithm is improved.

4. Natural consequence of the placement strategy: a theoretical analysis
The strategy of placing observations where the square of the forward sensitivities attains a
maximum has another natural optimality property. To examine this inherent optimality, we
seek an expression for the adjoint gradient starting from the fact that δJ = 〈∇J(c), δc〉 and at the
extremum ∇J(c) = 0, where 〈·, ·〉 denotes the inner product. Combining this with equation (3.7),
we obtain the following conditions for the optimality:

g1 = ∂J
∂x0

= − 1
σ 2

N∑
i=1

(z(ki) − h(x(ki)))Dh(x(ki))U(ki) = 0 (4.1)

and

g2 = ∂J
∂α

= − 1
σ 2

N∑
i=1

(z(ki) − h(x(ki)))Dh(x(ki))V(ki) = 0. (4.2)

Because the maps f in equation (2.1) and h in equation (2.5) are fixed, it can be verified that gi =
gi(z, x0, α) is a function of z, x0, α, where z = (z(k1), . . . , z(kN))T ∈ R

N. In the following analysis, we
consider two cases corresponding to a single observation with a linear observation operator and
multiple observations with a generic nonlinear observation operator. Although the former is a
subset of the latter, we begin with the simpler case to define the main quantities that enable us to
understand and analyse the second advantage of the given observation placement strategy.

(a) Case 1: scalar dynamical systems with unknown initial condition
In the first case, we consider a single observation (i.e. N = 1), known model parameter α and
unknown initial condition x0. Moreover, we assume that the model state is directly observable
(i.e. h(x) = x and Dh(x) = 1). Thus, the optimality condition in equation (4.1) can be reduced to the
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following:
− σ 2g1(z, k) = [z(k) − x(k)]u(k) = 0. (4.3)

Because f , h and α are invariant, solving equation (4.3) yields an optimal value of x0 = x0(z, k) as
a function of z(k) and k. We are interested in quantifying the sensitivity of the optimal estimate of
x0 with respect to the observation z at time k as follows:

y(k) = ∂x0(z, k)
∂z

. (4.4)

To this end, by differentiating both sides of equation (4.3) with respect to z = z(k), we obtain

0 = −σ 2 ∂g1

∂z
=
[

1 − u(k)
∂x0

∂z

]
u(k) + [z(k) − x(k)]

∂u(k)
∂x0

∂x0

∂z
. (4.5)

Solving equation (4.5), we get the required expression:

y(k) = ∂x0

∂z
= u(k)

u2(k) − e(k)(∂u(k)/∂x0)
. (4.6)

A little reflection reveals that when x(t) is the optimal trajectory, e(k) = z(k) − x(k) is small and can
be set to zero in equation (4.6) to give the following approximation:

y(k) = ∂x0

∂z
≈ u(k)

u2(k)
= sign(u(k))

|u(k)| . (4.7)

Equation (4.7) implies that y(k) is minimum where u2(k) attains its maximum value. In other
words, placing the single observation at time k∗, where u2(k) attains its maximum value, ensures
that the sensitivity y(k∗) takes its minimum value.

For the complementary case when α is not known but x0 is known, the optimality condition in
equation (4.2) becomes:

0 = σ 2g2(z, k) = [z(k) − x(k)]v(k). (4.8)

Through similar arguments, it can be verified that the optimal α that satisfies equation (4.8) is a
function of z and k. We define the sensitivity of the optimal α with respect to the observation z(k)
as follows:

w(k) = ∂α(z, k)
∂z

. (4.9)

Differentiating equation (4.8) with respect to z and simplifying using the same reasoning used in
obtaining equation (4.7), we get:

w(k) = v(k)
v2(k) − e(k)(∂v(k)/∂α)

≈ sign(v(k))
|v(k)| . (4.10)

Thus, w(k) takes on its minimum value at k = k∗ where v2(k) attains its maximum value, implying
that the proposed observation placement strategy (i.e. where v2(k) attains its maximum value)
leads to the minimum value of w(k).

(b) Case 2: scalar dynamical systems with unknown parameter and initial condition
Next, we extend our theoretical analysis to consider the simultaneous estimation of unknown
initial conditions and model parameters in the general case of multiple observations and arbitrary
observation operators. Solving equations (4.1) and (4.2), it follows that the optimal estimates
x0 = x0(z) and α = α(z) are functions of the observations, where z = (z(k1), . . . , z(kN))T ∈ R

N. Let
x = x(t, x0(z), α(z)) be the optimal solution of equation (2.1), starting from the optimal control
c(z) = (x0(z), α(z))T. In addition, we suppose that u(t) = u(t, x0(z), α(z)), v(t) = v(t, x0(z), α(z)) and
Dh(x(t)) are evaluated along the optimal trajectory x(t).

To bring out the key ideas and simplify the algebra, without loss of generality, we set N = 2
and denote ki by i. Then, the optimality conditions given by equations (4.1) and (4.2) for i = 1, 2
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can be rewritten as follows:

σ 2g1 = H1 = H11 + H12 = 0

and σ 2g2 = H2 = H21 + H22 = 0,

⎫⎬
⎭ (4.11)

where

H11 = [z(1) − h(x(1))]Dh(x(1))u(1), H12 = [z(2) − h(x(2))]Dh(x(2))u(2) (4.12)

and

H21 = [z(1) − h(x(1))]Dh(x(1))v(1), H22 = [z(2) − h(x(2))]Dh(x(2))v(2), (4.13)

where z(i), x(i), u(i) and v(i) are the values of the respective quantities evaluated at time t = ki = i,
1 ≤ i ≤ 2. We define the sensitivities of x0(z) and α(z) with respect to zi for i = 1, 2 as follows:

yi = ∂x0(z)
∂zi

and wi = ∂α(z)
∂zi

. (4.14)

Our goal is to relate the sensitivities in equation (4.14) to the forecast sensitivities u(k) and v(k).
As illustrated in case 1 above, this can be accomplished by computing the derivatives of Hi = 0
in equation (4.11) with respect to zi for 1 ≤ i ≤ 2, which, when simplified, gives the sought after
relation. The details of this derivation are given in appendix A. From equations (A 12) and (A 13)
of this appendix, we get the following:

G

[
yi
wi

]
= Dh(i)

[
ui
vi

]
, (4.15)

for i = 1, 2, where G = G1 + G2, F(i) = [u(i), v(i)] ∈ R
1×2. The observability Gramian decomposition

Gi can be evaluated as follows:

Gi = FT(i)D2
h(i)F(i), (4.16)

where it is assumed that D2
h(i) = D2

h(x(i)) > 0 along the trajectory of x in equation (2.1).
Consequently, the inverse of G controls the behaviour of yi and wi. Setting D2

h(i) = di for simplicity
in notation, it can be verified that

G =
⎡
⎣ d2

1u2
1 + d2

2u2
2 d2

1u1v1 + d2
2u2v2

d2
1u1v1 + d2

2u2v2 d2
1v

2
1 + d2

2v
2
2

⎤
⎦ , (4.17)

and its determinant is given by

|G| = d2
1d2

2(u1v2 − u2v1)2. (4.18)

Because the sensitivities can generally be positive or negative, for definiteness, our strategy is
based on the square of the sensitivities. Therefore, placing the first observation z1 at the maximum
value of u2

1 and the second observation z2 at the maximum value of v2
2 maximizes |G|. This in turn

reduces the magnitudes of yi and wi as desired, per Cramer’s rule. Table 1 provides expressions
for y(i) and w(i) for i = 1, 2.

Remark 4.1. For an increased number of observations, it is crucial to guarantee that the
observation placement strategy does not lead to a singular Gramian matrix. In appendix B, we
prove that the forecast sensitivities with respect to the initial condition and parameter cannot be
linearly dependent and that the resulting Gramian is, therefore, non-singular.

(c) Extensions to high-dimensional systems
We consider the case for which the state variable x is represented by a vector (i.e. x ∈ R

n, where n
is the number of degrees of freedom of the system) and α ∈ R

p. The discrete-time version of the
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Table 1. Expressions for y(i) andw(i) for i = 1, 2.

y w

i = 1
v2(u1v2 − u2v1)

|G|
u2(u2v1 − u1v2)

|G|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i = 2
v1(u2v1 − u1v2)

|G|
u1(u1v2 − u2v1)

|G|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

model in equation (2.1) for x ∈ R
n can be written as follows:

xk+1 = M(xk, α), (4.19)

where M : R
n × R

p → R
n defines the one-time step mapping defined by applying a temporal

integration scheme (e.g. M(xk, α) = xk + (tk+1 − tk)f (xk, α) for a first-order Euler integrator).
Equation (2.3) for the dynamics of u(t) ∈ R

n×n and v(t) ∈ R
n×p can be rewritten as follows:

uk+1 = DM(k)uk and vk+1 = DM(k)vk + Dα
M(xk), (4.20)

where [
DM(k)

]
i,j

= ∂Mi

∂xj

∣∣∣∣
x=xk

and
[

Dα
M(k)

]
i,j

= ∂Mi

∂αj

∣∣∣∣
x=xk

. (4.21)

Without loss of generality, we focus our analysis on estimating the model’s initial condition x0
from a set of measurements, z ∈ R

m (i.e. the control is c = x0).

(i) Linear dynamics (vector)

We first consider a linear dynamical system:

xk+1 = Mxk, (4.22)

where M ∈ R
n×n is a square matrix with rank n. Furthermore, we suppose that the measurement

vector z ∈ R
m is related to the state x by a linear operator H ∈ R

m×n as follows:

zk = Hxk + ηk, (4.23)

where ηk ∈ R
m represents an additive measurement noise with zero mean and covariance matrix

R ∈ R
m×m. The cost function for the inverse problem can be written as

J(c) = 1
2

N∑
i=1

[zi − Hxi]
TR−1[zi − Hxi]. (4.24)

From equation (4.22), we can relate the prediction xi to the initial condition x0 = c as xi = Mix0 =
Mic and xTi = cT(Mi)T = cT(MT)i. We also note that the forward sensitivity of the model forecast with
respect to its initial condition can be defined as ui = Mi because the model Jacobian is DM = M
and u0 = I (the identity matrix). Therefore, equation (4.24) and its gradient can be rewritten as

J(c) = 1
2

N∑
i=1

[
zTi R

−1zi − 2zTi R
−1HMic + cT

(
(MT)iHTR−1HMi)c] (4.25)

and

∇cJ =
N∑

i=1

[(MT)iHTR−1[HMic − zi]. (4.26)

Setting the gradient ∇cJ in equation (4.26) to zero, we get an optimal expression for c as follows:

N∑
i=1

(MT)iHTR−1HMic =
N∑

i=1

(MT)iHTR−1zi. (4.27)
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The observability Gramian is now defined as G =∑N
i=1 Gi, where Gi = (MT)iHTR−1HMi. Thus,

the optimal c is given by

c = G−1
N∑

i=1

(MT)iHTR−1zi. (4.28)

Differentiating both sides of equation (4.28) with respect to zi yields the following expression for
the sensitivity of the optimal estimate of the control c to the measurements:

∂c
∂zi

= G−1(MT)iHTR−1. (4.29)

Maximizing the square of the forward sensitivity of the model forecast with respect to the control
yields a Gramian matrix G with the largest determinant, which minimizes the sensitivity of the
optimal estimate of the control to the actual measurements.

We note that the minimum number of observation times N to yield a well-posed inverse
problem is defined as N = n/m. However, we highlight that due to the existence of measurement
noise and correlations between measurement components, a regularization is often imposed for
the solution of the inverse problem. For the special case of m = n, we place a single measurement
zi ∈ R

n at arbitrary time i. Assuming H = I and R−1 = (1/σ 2)I, we get the following expressions
for the Gramian and the sensitivity of the optimal estimate of the control c with respect to the
measurement zi:

G = 1
σ 2 (MT)iMi and

∂c
∂zi

= M−i. (4.30)

As noted above, the forecast sensitivity with respect to the initial conditions can be written as
ui = Mi in the linear dynamics case. Therefore, the sensitivity ∂c/∂zi is inversely proportional to
the sensitivity of xi with respect to c.

Remark 4.2. The system matrix M in equation (4.22) is a real matrix and it may or may not
be diagonalizable. For the latter, it is similar to the Jordan normal form. For the case where M is
diagonalizable, there exists a non-singular matrix P such that

Λ = P−1MP, (4.31)

where Λ is a diagonal matrix of the real eigenvalues of M. Therefore, Mi = PΛiP−1, where
Λi = Diag(λi

1, λi
2, . . . , λi

n), where λ1 ≥ λ2 ≥ · · · ≥ λn. In this case, equation (4.30) can be rewritten
as follows:

P−1
[

∂c
∂zi

]
P = λ−i. (4.32)

Therefore, if |λk| > 1, λi
k is large (as well as the square of forward sensitivities because ui = Mi)

and ∂c/∂zi decreases. In addition, equation (4.32) shows that the basis P that diagonalizes M also
diagonalizes the matrix [∂c/∂zi]n×n, which implies that [∂c/∂zi]n×n is similar to a diagonal matrix.

(ii) Nonlinear dynamics (vector)

We consider the nonlinear case of equation (4.22) as follows:

xk+1 = M(xk) and zk = h(xk) + ηk. (4.33)

The forecast error is defined as ek = zk − h(xk), and the cost function can be written as follows:

J(c) = 1
2

N∑
i=1

eTkR−1ek =
N∑

i=1

Jk(c), (4.34)

where Jk(c) = (1/2)eTkR−1ek. To simplify our analysis, we assume R = σ 2I, which gives the
following:

Jk(c) = 1
2σ 2 eTkek = 1

2σ 2

m∑
j=1

(zi,j − hj(xi))
2, (4.35)
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Figure 1. Solution of the decay model using the true and guess controls.

where zi,j is the jth component of the measurement vector zi at time ti. Thus, the cost function J(c)
can be written as follows:

J(c) = 1
2σ 2

N∑
i=1

m∑
j=1

(zi,j − hj(xi))
2. (4.36)

In other words, J(c) is additive in Jk,i := (1/2σ 2)(zi,j − hj(xi))2. Therefore, it is sufficient to
investigate Jk,i for the analysis of the dual advantages of the proposed forward sensitivity
observation placement strategy. The analysis of Jk,i is similar to the analysis of J(c) for the scalar
case presented in §4 and appendix A.

5. Numerical experiments
In this section, we consolidate the results related to the application of the theoretical analysis
carried out in §§3 and 4 to the dynamical system introduced in §2. First, we explore the advantages
of observation placement using the FSM with two test cases for linear and nonlinear scalar
dynamical systems. In both cases, the initial condition and model parameter represent the
control variable. We investigate the dependence of the optimal estimate of the sought control
variable on the time instants at which measurements are collected. The forward sensitivities
(i.e. u and v) as well as the sensitivities of the control variable estimates with respect to the
different measurements are computed to analyse the effect of observation placement on solving
the inverse problem. After that, we showcase the success of the FSM-based observation placement
strategy using two problems governed by PDEs, namely the one-dimensional Burgers and the
two-dimensional advection diffusion test cases.

(a) Linear dynamics (scalar)
The first example that we consider is an exponential decay model defined as follows:

ẋ = ax, (5.1)

where x is the model state and a < 0 is the decay parameter. It can be verified that the analytic
solution of this ODE is x(t) = x0 eat, where x(0) = x0 is the initial condition. For our numerical
experiments, we set the true controls as c̄ = [x̄0, ā]T = [2, −1]T. These are assumed to be unknown,
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Figure 2. Model sensitivity with respect to (a) initial condition x0 (left) and (b) the decay parameter a (right).

and instead the initial guessed values are given by c = [x0, a]T = [1.8, −0.8]T. The dynamical
evolution of the decay in response to the true and guess controls is shown in figure 1.

Synthetic observations are created from the true state with added noise of zero mean and a
standard deviation 10% of the model state at the times when the observations are made. We follow
the proposed methodology for placing the observation where the forward sensitivities attain their
maximum values. For the considered exponential decay model, the forward sensitivities of the
model predictions with respect to the control variables can be written as follows:

u(t) = eat and v(t) = t eatx0 = tx(t). (5.2)

With a < 0, u(t) = e−|a|t attains the maximum at t = 0 and v(t) = t e−|a|tx attains the maximum at
t∗ = 1/|a|. To avoid a zero value of v(t), we avoid placing observations at t = 0. Moreover, it can be
verified from equation (4.18) that |G| = 0 if t1 = t2. Therefore, we can place the two observations at
t1 = ε > 0 where ε is a small value (as opposed to having the observation coincide with the initial
time) and t2 = t∗ = 1/|a|. In this case, it can be shown that G is given by

G = e−2|a|ε
⎡
⎣ 1 εx0

εx0 ε2x2
0

⎤
⎦+ e−2|a|t∗

⎡
⎣ 1 t∗x0

t∗x0 t∗2x2
0

⎤
⎦ , (5.3)

which is positive definite. The plots of forecast sensitivities to initial condition x0 and decay
parameter a are shown in figure 2 for the true and guessed values of control c. In order to
optimize the solution of the inverse problem, observation placements are chosen where the
forecast sensitivities to control reach a maximum (i.e. u2(t) and v2(t) exhibit maxima). In particular,
we place an observation at t1 = k1 = ε = 0.1 (to avoid singularity of the Gramian, G, in equation
(4.18)) and at t2 = k2 = 1.0.

The resulting cost function is displayed in figure 3 for different control values where the
minimum value occurs around the true values of the control. Numerically, the search for the
minimum can be made using Newton’s method, leading to optimal estimates of the control values
as c = (x0, a) = (1.7329, −0.7256).

Plots of sensitivity of the optimal control estimates with respect to observations (i.e. y2
1(t), w2

1(t),
y2

2(t) and w2
2(t)) are given in figures 4–7. Figure 4 shows the contour plot of y2

1(t) as well as the
cross-sections of this contour at the observation times (i.e. t1 = 0.1 and t2 = 1.0). Similar plots for
w2

1(t) are covered in figure 5. It can be seen that maximum values of the sensitivity of the optimal
estimate of x0 with respect to the first observation occur when t1 and t2 are close to each other. For
example, by selecting t1 = 0.1, placing the second observation at earlier times (e.g. t2 < 0.5) leads
to very high sensitivity of the optimal estimate of x0 and a with respect to the first observation
location. Thus, larger values of t2 are to be sought to minimize y2

1.
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Figure 3. Cost function for exponential decay model.
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Figure 4. Sensitivity of the optimal estimates of the initial condition x0 to the first observation z1. (a) Contour plot of y21 (t) at
different values of t1 and t2. (b) y21 (t) values at t1 = 0.1 and different values of t2. (c) y21 (t) values at t2 = 1.0 and different values
of t1. Note that minimum values of y21 are obtained at t1 = 0.1 and t2 = 1.0.

0 0.5 1.0 1.5 2.0
t1

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t2

0.5 1.0 1.5 2.0
t2

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0
t1

0

25

50

75

100

125

150

175

200

w2
1w2

1

t2 = 1t1 = 0.1

2.0

5.0
10.030.0

30
.010

.05.
02.

0

0.
5

0.
2

(c)(a) (b)

Figure 5. Sensitivity of the optimal estimates of the decay parameter a to the first observation z1. (a) Contour plot of w2
1 (t) at

different values of t1 and t2. (b) y21 (t) values at t1 = 0.1 and different values of t2. (c)w2
1 (t) values at t2 = 1.0 and different values

of t1. Note that minimum values ofw2
1 are obtained at t1 = 0.1 and t2 = 1.0.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 A

ug
us

t 2
02

3 



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220815

..........................................................

0.
5

2.
0

5.
0

15
.0

30
.0

30.0

15.0

5.0

2.0

0 0.5 1.0 1.5 2.0
t1

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t2

0.5 1.0 1.5 2.0
t2

0.2 0.4 0.6 0.8 1.0
t1

0

25

50

75

100

125

150

175

200

y2
2y2

2

t2 = 1t1 = 0.1
(c)(a) (b)

Figure 6. Sensitivity of the optimal estimates of the initial condition x0 to the second observation z2. (a) Contour plot of y22 (t) at
different values of t1 and t2. (b) y22 (t) values at t1 = 0.1 and different values of t2. (c) y21 (t) values at t2 = 1.0 and different values
of t1. Note that minimum values of y22 are obtained at t1 = 0.1 and t2 = 1.0.
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Figure 7. Sensitivity of the optimal estimates of the decay parameter a to the second observation z2. (a) Contour plot ofw2
2 (t)

at different values of t1 and t2. (b) y21 (t) values at t1 = 0.1 and different values of t2. (c) w2
1 (t) values at t2 = 1.0 and different

values of t1. Note that minimum values ofw2
2 are obtained at t1 = 0.1 and t2 = 1.0.

Likewise, figure 6 describes the properties of y2
2(t) and figure 7 displays properties of w2

2(t).
As expected from the theory, the sensitivity of the optimal control estimates with respect to the
observations exhibit minimum values at the two times where the observation sites were chosen.
For example, by selecting t1 = 0.1, y2

2 and w2
2 approach their minimum values at t2 = 1. In a similar

way, by selecting t2 = 1, y2
2 and w2

2 are minimized by placing the first observation at very small
values of t1.

(b) Nonlinear dynamics (scalar)
We extend our analysis and consider a system governed by nonlinear dynamics as follows:

ẋ = ax2, (5.4)

where x ∈ R is the state variable and a ∈ R is the model parameter. It can be further shown that the
solution of this system is given by x(t) = x0/(1 − ax0t). The true and guessed controls are defined
as c̄ = [x̄0, ā]T = [2, −1]T and c = [x0, a]T = [1.75, −0.75]T, respectively. The dynamical evolution of
the nonlinear decay system in response to the true and guess controls is shown in figure 8.

The sensitivity of the model forecast with respect to the initial condition and model parameter
can be written as follows:

u(t) = 1
(1 − ax0t)2 and v(t) = x2

0t

(1 − ax0t)2 . (5.5)
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Figure 8. Solution of the nonlinear decay model using the true and guess controls.
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Figure 9. Model sensitivity with respect to (a) initial condition x0 (left) and (b) the decay parameter a (right) for ẋ = ax2.

The evolution of these sensitivities with time is depicted in figure 9. We note that similar figures
can be obtained by solving equation (2.3) numerically, where Df (x) = 2ax and Da

f (x) = x2.

Although the maximum value of u2 occurs at t = 0, it corresponds to a zero value of v2. Thus,
we avoid placing observations at the initial time and we select t1 = ε = 0.1 > 0. Moreover, we
select t2 = 0.5 to maximize the value of v2. We follow a twin experiment approach to generate
synthetic observations by adding white Gaussian noise to the true system state (corresponding
to the true controls). The resulting cost function is depicted in figure 10, where Newton’s method
can be followed to obtain the optimal values of x0 and a.

As highlighted before, we place the observations where the squares of the forward sensitivities
of the model forecast with respect to the control are maximized. This guarantees that the
observability Gramian is positive definite and subsequently keeps the adjoint gradient away
from zero, which in turn accelerates the search for optimal estimates of the control. The second
advantage of the proposed observation placement strategy is related to the robustness of the
solution of the inverse problems against small perturbations to the collected measurement data.
Figure 11 depicts the sensitivity of the optimal estimate of initial condition with respect to the
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Figure 11. Sensitivity of the optimal estimates of the initial condition x0 to the first observation z1 for the nonlinear system
ẋ = αx2. (a) Contour plot of y21 (t) at different values of t1 and t2. (b) y

2
1 (t) values at t1 = 0.1 and different values of t2. (c) y21 (t)

values at t2 = 0.5 and different values of t1.

first observation, considering a total of two observations at t1 and t2. From the contour plots of
y2

1, we see that collecting the two observations at close time instants results in higher sensitivity
of the estimated initial condition to the measurement itself. Similar observations are obtained
from figure 12 for w2

1, where w1 denotes the sensitivity of the optimal estimate of the model
parameter with respect to the first observation. This is in agreement with the fact that highly
correlated measurements do not add valuable information to the inversion problem. Moreover,
from equation (4.18), when t1 and t2 coincide, the determinant of the observability Gramian
vanishes, resulting in extreme values of the sensitivities yi and wi for i = 1, 2.

Figures 13 and 14 display the sensitivity of the inferred initial condition and model parameter,
respectively, to the second observation value at t2. Similar to y2

1 and w2
1 plots, we see that the

maximum values of y2
2 and w2

2 occur when t1 and t2 are close to each other. In addition, looking
at y2

2 and w2
2 values at t1 = 0.1, it is clear that y2

2 and w2
2 exhibit very large values at small values of

t2, then decrease to attain their minima around t2 = 0.5 before slightly increasing again at larger
values of t2. In a similar fashion, through an investigation of y2

2 and w2
2 at t2 = 0.5 with varying t1,

we observe that maximum values occur when t1 = t2 = 0.5. On the other hand, minimum values of
the sensitivity of the control estimate with respect to the second measurement z2 at t2 = 0.5 occur
when the first measurement is collected earlier, at small values of t1. The numerical investigations
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Figure 14. Sensitivity of the optimal estimates of the decay parameter a to the second observation z2 for the nonlinear system
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of the sensitivity of the inverse problem solution to the observation values and locations confirm
that they are minimized when the observations are placed using the proposed forward sensitivity
analysis. By placing the observations at points where the squares of the forward sensitivities of the
forecast are maximized, we (i) control the shape of the cost function in such a way that flat patches
(with zero gradients) are avoided, which improves the convergence characteristics of solving the
inverse problem, and (ii) guarantee that the sensitivities of the estimated control values (solution
to the inverse problem) with respect to the measurement values are minimized, which enhances
the robustness of the inversion framework against possible perturbations in the collected sensor
data (figures 13 and 14).
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Figure 15. The first two invariants for the model forecast sensitivities with respect to the initial condition for the one-
dimensional viscous Burgers problem.

(c) One-dimensional Burgers problem
Our third test case is an advection shock problem governed by the one-dimensional viscous
Burgers equation as follows:

∂q
∂t

+ q
∂q
∂x

= 1
Re

∂2q
∂x2 , (5.6)

where q(x, t) is the velocity field and Re is the dimensionless Reynolds number, defined as the ratio
of inertial effects to viscous effects. We note that x here denotes the spatial variable/coordinate
while the discretization of q represents the state vector. We perform spatial discretization by
defining the velocity field at n discrete locations, equally spaced in the domain L. We apply a
second-order centred finite difference scheme for the linear term and use the skew-symmetric
formulation from Aref & Daripa’s scheme [54] for the nonlinear term as follows:

∂qi

∂t
= −1

3
(qi+1 + qi−1 + qi)(qi+1 − qi−1)

2
x
+ 1

Re
qi+1 − 2qi + qi−1


x2 , (5.7)

where 
x is the grid spacing, 
x = xi+1 − xi. By arranging the velocity field in a column vector,
equation (5.7) is equivalent to equation (4.19). We define a domain of length L = 1 and enforce
zero Dirichlet boundary conditions, q(0, t) = q(1, t) = 0. A twin experiment is employed to generate
observational data and assess the quality of the solution to inverse problems. In particular, the
ground truth corresponds to Re = 500 and the following initial condition [55]:

q(x, 0) = x
1 + exp ((Re/16)(4x2 − 1))

, (5.8)

while the background solution corresponds to a sinusoidal wave as q(x, 0) = sin(2πx/L). Because
it is unfeasible to track individual components of the forecast sensitivity matrices, we focus on
the following two quantities related to the sensitivity matrix u:

I1 = trace
(
uTu

)
and I2 = 1

2

((
trace

(
uTu

))2
− trace

((
uTu

)2)). (5.9)

Figure 15 shows the time variation of I1 and I2 for the one-dimensional Burgers problem. Both
quantities attain their largest values near the initial time along with an additional bump around
t = 0.35.

We empirically explore the advantages of the FSM-based observation placement strategy
by considering different scenarios. The first two rows in figure 16 correspond to placing the
observations by tracing the model forecast sensitivities. In particular, our first experiment
corresponds to placing the observations near the initial time at t = 0.01 and t = 0.05. The second
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Figure 16. A comparison between inverse problem solutions (for initial conditions) at different observation placement times
and varying levels of noise for the one-dimensional viscous Burgers problem. Background refers to the guessed (inaccurate)
initial conditions while the analysis refers to the solution of the inverse problem after observations have been assimilated.

experiment corresponds to placing one observation at t = 0.01 and another at t = 0.35 near the
second peak in figure 15. We test the quality of the inverse problem solution with different
levels of measurement noise. Figure 16 demonstrates that the FSM placement strategy enables the
accurate inference of the unknown initial condition even with large levels of noise. In this figure
and the remaining discussion, we use standard terminology from data assimilation studies, where
‘background’ refers to the estimated guess of unknown initial conditions and/or parameters.
This estimate could be based on previous model predictions, historical data or an intelligent
guess. Thus, the background solution is the model forecast based on these supposedly inaccurate
estimates. On the other hand, ‘analysis’ refers to the solution of the inverse problem (e.g. for
unknown initial conditions and/or parameters) after assimilating observation data. We highlight
that we apply a truncated singular value decomposition as a regularization technique for solving
the inverse problem. Our third experiment corresponds to arbitrarily placing the observations
at t = 0.25 and t = 0.50 while we place them at t = 0.50 and t = 1.0 in the fourth experiment. We
can see that both cases result in an inaccurate solution of the inverse problem. It is worth noting
that this inaccuracy is in part due to the off-target background information (the sinusoidal wave).
However, this exaggeration is intentional to show the benefits of the proposed placement strategy
even in challenging situations. Finally, the predicted velocity fields are depicted in figure 17,
where placing the observations closer to the maximum values of the forecast sensitivities yields
improved results.

(d) Two-dimensional advection diffusion problem
Our last test case is the two-dimensional advection diffusion equation as follows:

∂q
∂t

+ cx
∂q
∂x

+ cy
∂q
∂y

= ν

(
∂2q
∂x2 + ∂2q

∂y2

)
. (5.10)
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Figure 17. The predicted velocity field at t = 0.5 (a) and t = 1.0 (b) for the one-dimensional viscous Burgers problem with
different observation placement times with 10% measurement noise along with the relative 
2 error of the predicted velocity
field at different times (c). Background solution refers to the forecast using the guessed (inaccurate) initial conditions while the
analysis refers to the forecast after observations have been assimilated.

Equation (5.10) can be used to describe the evolution of the concentration of a substance
under convection and diffusion effects, and the inversion of unknown initial conditions can be
particularly important in the context of (contaminant) leak detection. Thus, variants of this test
case have been used extensively in the literature of data assimilation and optimal experimental
designs [56–58]. We use cx = cy = 0.5 and ν = 0.01 and consider an initial condition of Gaussian
distribution centred at (x0, y0) as q(x, y, 0) = e−(1/ν)((x−x0)2+(y−y0)2). The true field corresponds to
(x0, y0) = (0.25, 0.25) while the background (guessed) solution corresponds to (x0, y0) = (0.5, 0.5).

Figure 18 illustrates that the model forecast sensitivity with respect to the initial conditions
exhibits maximum values near the initial time. In figure 19, we repeat the solution of the inverse
problems while varying the times at which we place our observations. While it might not be
possible in practice to place all observations near the initial time, figure 18 gives theoretical
guidelines to prioritize observations at specific time instants over others. For instance, it is evident
from figure 19 that placing observations at t = 0.5 and t = 1.0 (corresponding to minimum values
of forecast sensitivities) produces erroneous initial conditions. On the other hand, collecting data
at t = 0.1 and t = 0.2 (where the forward sensitivities are relatively larger) results in a better
inference of the unknown initial condition. Finally, the predicted solution at t = 1 is shown in
figure 20 where observations are placed at t = 0.01 and t = 0.05.

6. Conclusion
This paper systematically introduces a unified notion in the analysis and application of FSM to
address various questions related to forecast error correction using dynamic data assimilation
[53]. We propose a strategy based on maximizing the square of the forward sensitivities, which
guarantees efficient recovery of control variables and minimizes the sensitivity of optimal control
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Figure 18. The first two invariants for themodel forecast sensitivities with respect to initial conditions for the two-dimensional
advection diffusion problem.
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Figure 19. A comparison between inverse problem solutions (for initial conditions) at different observation placement
times with 10% measurement noise for the two-dimensional advection diffusion problem. Background refers to the guessed
(inaccurate) initial conditions while the analysis refers to the solution of the inverse problem after observations have been
assimilated.

estimates with respect to observations. First and foremost, the contribution of this paper can be
better understood when compared with our ongoing efforts dedicated to the development of
the FSM framework. In Lakshmivarahan & Lewis [52], we first proved the equivalence between
FSM and the four-dimensional VAR method. In Lakshmivarahan et al. [24,25], by relating the
observability Gramian to the forward sensitivities, we derived an intrinsic expression for the
adjoint sensitivity in terms of the observability Gramian. By exploiting the structure of the
observability Gramian, we then derived a strategy to place observations where the squares of
the forward sensitivities attain maximum values.

In this paper, we provide a detailed analysis of this observation placement strategy and show
that it provides two crucial advantages in the context of inverse problems. First, we demonstrate
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Figure 20. The predicted solution at t = 1 for the two-dimensional advection diffusion problem following the proposed
observation placement strategy (observations are placed at t = 0.01 and t = 0.05) with 10% measurement noise along with
the relative 
2 error of the predicted velocity field at different times (right). Background solution refers to the forecast using the
guessed (inaccurate) initial conditions while the analysis refers to the forecast after observations have been assimilated.

that the FSM observation placement strategy avoids the occurrence of flat patches in the cost
functional and improves the effectiveness of the minimization algorithm. Second, we also prove
that it minimizes the sensitivity of the estimates (of the inverted quantities) with respect to the
observations. The smallness of these quantitative measurements of the sensitivity of the estimates
to observations supports determining observation sites using forward sensitivities. An advantage
of the FSM analysis is that it does not require the adjoint code. However, computing the forward
sensitivities is computationally demanding, but once done, we can solve two related problems.
First, we can place the observations where the forward sensitivity attains a maximum value.
Second, we can compute the optimal estimates of the control using FSM.
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Appendix A. Proof of the second advantage of the FSM observation placement
strategy: Scalar case

In this appendix, we derive an intrinsic relation that exists between the sensitivities of the
estimates of the control with respect to the observations, namely yj and wj for 1 ≤ j ≤ 2, and the
forward sensitivities u(k) and v(k).

— Step 1: Derivatives of x(t), u(t), v(t) and Dh(x(t)) with respect to the observation zj for
1 ≤ j ≤ 2 are given by

∂x(t)
∂zj

= u(t)yj + v(t)wj,
∂u(t)
∂zj

= ∂u(t)
∂x0

yj + ∂u(t)
∂α

wj,
∂v(t)
∂zj

= ∂v(t)
∂x0

yj + ∂v(t)
∂α

wj,

∂Dh(x(t))
∂zj

= D(2)
h (x(t))

∂x(t)
∂zj

, where D(2)
h (x) = ∂2h

∂x2 �= (
∂h
∂x

)2. (A 1)
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— Step 2: From the definition of e(t) in equation (3.3), we get

∂e(t)
∂zj

= δtj − Dh(x(t))
∂x(t)
∂zj

, (A 2)

where δtj is the Kronecker delta (i.e. δtj = 1 if t = j and δtj = 0 otherwise).
— Step 3: Differentiating H1j in equation (4.12) with respect to zp, we get the following:

(δjp − Dh(x(j))
∂x(j)
∂zp

)Dh(x(j))u(j) + e(j)
∂Dh(x(j))

∂zp
u(j) + e(j)Dh(x(j))

∂u(j)
∂zp

= 0. (A 3)

— Step 4: Differentiating H2j in equation (4.13) with respect to zp, we get the following:

(δjp − Dh(x(j))
∂x(j)
∂zp

)Dh(x(j))v(j) + e(j)
∂Dh(x(j))

∂zp
v(j) + e(j)Dh(x(j))

∂v(j)
∂zp

= 0. (A 4)

— Step 5: When x(t) is optimal, a little reflection reveals that e(k) along the optimal path is
small, and henceforth it is set to zero in equations (A 3) and (A 4). Thus, the approximate
expressions for ∂Hij/∂zp can be given as listed in table 2.

— Step 6: The optimality conditions (i.e. ∂Hi/∂zp = ∂Hi1/∂zp + ∂Hi2/∂zp) reduce to the
following:

Dh(1)u(1) = D2
h(1)

∂x(1)
∂z1

u(1) + D2
h(2)

∂x(2)
∂z1

u(2), (A 5)

Dh(2)u(2) = D2
h(1)

∂x(1)
∂z2

u(1) + D2
h(2)

∂x(2)
∂z2

u(2), (A 6)

Dh(1)v(1) = D2
h(1)

∂x(1)
∂z1

v(1) + D2
h(2)

∂x(2)
∂z1

v(2) (A 7)

and Dh(2)v(2) = D2
h(1)

∂x(1)
∂z2

v(1) + D2
h(2)

∂x(2)
∂z2

v(2). (A 8)

— Step 7: Substituting for ∂x(t)/∂zj using equation (A 1) in equations (A 5) and (A 7), we get

Dh(1)u(1) = D2
h(1)(u2(1) + u(1)v(1))y(1) + D2

h(2)(u2(2) + u(2)v(2))w(1) (A 9)

and

Dh(1)v(1) = D2
h(1)(u(1)v(1) + v2(1))y(1) + D2

h(2)(u(2)v(2) + v2(2))w(1). (A 10)

Referring to equations (3.5) and (3.9), we define F(i) = [u(i), v(i)]T ∈ R
2×1 and G(i) =

FT(i)D2
h(i)F(i) ∈ R

2×2. Thus, equations (A 9) and (A 10) can be rewritten as

Dh(1)

[
u(1)
v(1)

]
= G

[
y1
w1

]
, (A 11)

where G = G(1) + G(2). Therefore, y1 and w1 can be obtained as[
y1
w1

]
= G−1Dh(1)

[
u(1)
v(1)

]
. (A 12)

Similarly, from equations (A 6) and (A 8) and using the same procedure, we get[
y2
w2

]
= G−1Dh(2)

[
u(2)
v(2)

]
. (A 13)
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Table 2. Expressions for ∂Hij/∂zp for i, j, p ∈ {1, 2}.

j = 1 j = 2

i = 1 p= 1
(
1 − Dh(1)

∂x(1)
∂z1

)
Dh(1)u(1) −D2h(2)

∂x(2)
∂z1

u(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p= 2 −D2h(1)
∂x(1)
∂z2

u(1)
(
1 − Dh(2)

∂x(2)
∂z2

)
Dh(2)u(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i = 2 p= 1
(
1 − Dh(1)

∂x(1)
∂z1

)
Dh(1)v(1) −D2h(2)

∂x(2)
∂z1

v(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p= 2 −D2h(1)
∂x(1)
∂z2

v(1)
(
1 − Dh(2)

∂x(2)
∂z2

)
Dh(2)v(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix B. Linear independence of the forward sensitivities of the model
forecast at different times with respect to the control

The discrete-time version of the model given in equation (2.1) can be written as

xk+1 = M(xk, α), (B 1)

where M : R × R → R defines the one-time step mapping defined by applying a temporal
integration scheme. Equation (2.3) for the dynamics of u(t) and v(t) can be rewritten as follows:

uk+1 = DM(k)uk, u0 = 1,

and vk+1 = DM(k)vk + Dα
M(xk), v0 = 0,

}
(B 2)

where

DM(k) = ∂M
∂x

∣∣∣∣
x=xk

and Dα
M(k) = ∂M

∂α

∣∣∣∣
x=xk

. (B 3)

For simplicity of notation, let ak := DM(k) and bk := Dα
M(k). Thus, the sequence of uk can be a

written as follows:
uk = ak−1ak−2 . . . a1a0, for k ≥ 1. (B 4)

Similarly, the sequence of vk can be expanded as follows:

vk = (ak−1ak−2 . . . a1b0) + (ak−1ak−2 . . . a2b1) + (ak−1ak−2 . . . a3b2) + · · ·
+ (ak−1ak−2bk−3) + (ak−1bk−2) + (bk−1), for k ≥ 1. (B 5)

For the Gramian matrix G in equation (4.17) to be singular (i.e. the determinant in equation
(4.18) equals zero), the vectors [u1, u2]T and [v1, v2]T ought to be linearly dependent. In what
follows, we show that this situation cannot happen. For the vectors [u1, u2]T and [v1, v2]T to be
linearly dependent, we get uk = Cvk for all k where C is a non-zero constant, then we can write the
following:

u1 = Cv1 ⇐⇒ a0 = Cb0 (B 6)

and
u2 = Cv2 ⇐⇒ a1a0 = Ca1b0 + Cb1. (B 7)

Because a0 = Cb0, equation (B 7) can be rewritten as a1a0 = a1a0 + Cb1, leading to b1 = 0. Similarly,

u3 = Cv3 ⇐⇒ a2a1a0 = Ca2a1b0 + Ca2b1 + Cb2. (B 8)

With a0 = Cb0 and b1 = 0, we also get b2 = 0. Following the same procedure, this leads to bk =
Dα

M(k) = 0 for all k �= 0. In other words, this implies that the sensitivity of the model M with respect
to the parameter α equals zero along the trajectory except at t = 0. However, this cannot be the
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case because a model cannot be sensitive to its parameters at t = 0 and not sensitive at other times.
Therefore, the vectors of uk and vk cannot be linearly dependent, and the proposed observation
placement strategy thus does not lead to a singular observability Gramian.
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